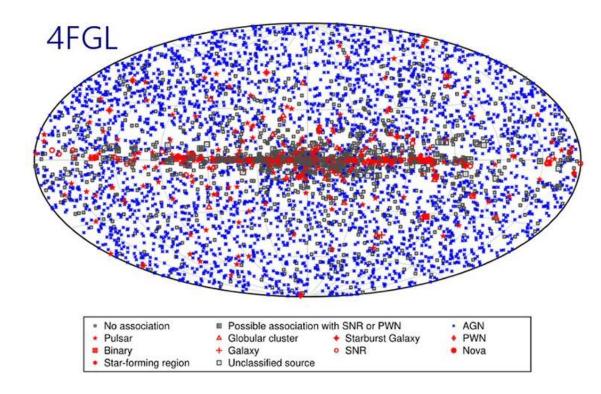
TXS 0128+554: A Young Gamma-Ray Emitting AGN With Episodic Jet Activity


Prof. Matt Lister

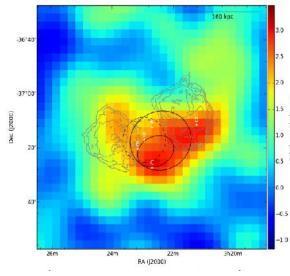
Department of Physics & Astronomy, Purdue University, USA

TXS 0128+554: A Young Gamma-Ray Emitting AGN With Episodic Jet Activity, M. L. Lister, D. C. Homan, Y. Y. Kovalev, S. Mandal, A. B. Pushkarev, & A. Siemiginowska, Astrophysical Journal, **899**, id. 141, 15 pages (2020)

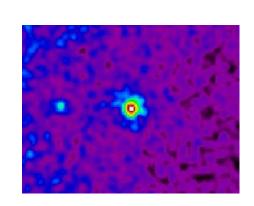
Artist Impression (NASA GSFC)

The Fermi LAT Gamma-Ray Sky

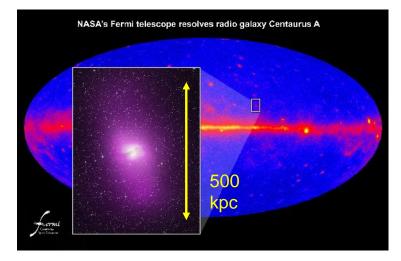
 4FGL-DR2: Broadband all-sky catalog (0.1 Gev – 300 GeV) of ~5800 gamma-ray sources.


~ 95% of sources with known associations are AGN.

• 98% of the 4LAC AGN catalog are highly beamed blazars.


Image credit: http://www.ssdc.asi.it

Gamma-rays from Nearby Radio Galaxies


- Only a few detections to date, all within 70 Mpc.
- Non-beamed lobe emission detected.
- Inverse-Compton scattering of CMB photons by relativistic electrons and/or cosmic ray interactions with lobe plasma.

Fornax A (Ackermann et al. 2016 ApJ, 826)

Perseus A (Abdo et al. 2009, ApJ 699,31)

Centaurus A (Abdo et al. 2010, Science 328, 725)

Gamma-rays from Young AGN

2.4

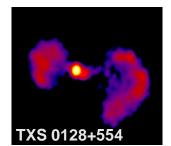
1.6

0.8 0.0 -0.8

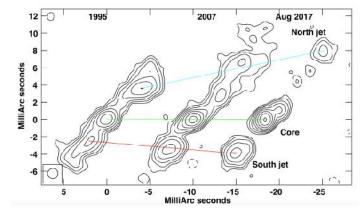
> -1.6 -2.4

-3.2

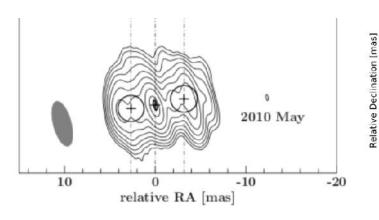
-10


• Only a handful of gamma-ray detections among ~100 known CSOs.

10


-10 E

10


- Non-blazar (misaligned) jets with sub-luminal speeds.
- Sizes range from 7 pc to 56 pc.
- Three have compact core features.

(Lister et al. 2020, ApJ 899, 141)

NGC 3894 (Principe et al. 2020, A&A 535,185)

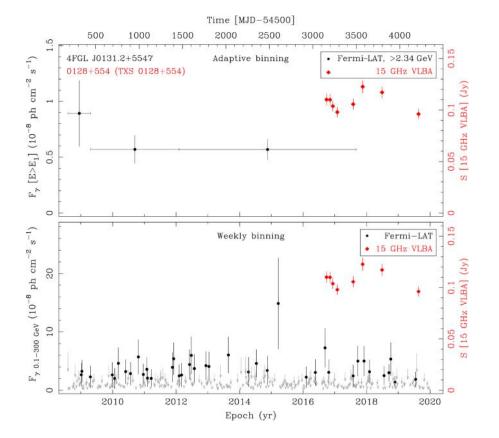
PMN J1603-4904 (Müller et al., 2014, A&A 562,4)

PKS 1718-649

5

(Angioni et al. 2019, A&A 627, 148, Migliori et al. 2016, ApJ 821, L31)

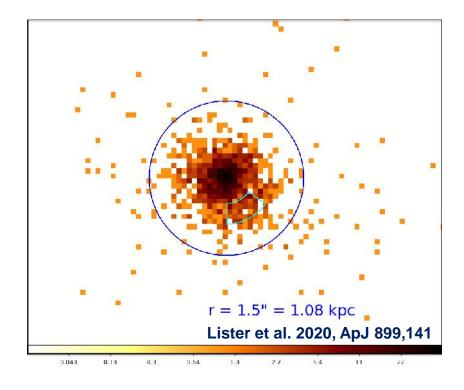
0


Relative Right Ascension [mas]

-5

Compact Radio Source TXS 0128+554 AGN Host: LEDA 2513233 Elliptical galaxy at z = 0.036 (D = 160 Mpc)

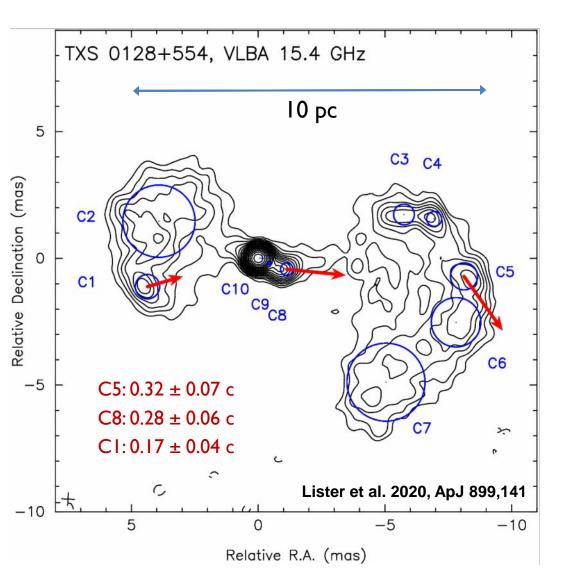
TXS 0128+554: A New Gamma-ray CSO


- Added to the MOJAVE VLBA program in 2016.
- Compact radio-loud AGN (0.1 Jy at 15 GHz) located within 95% confidence ellipse of a hard spectrum (Γ = 2.1) LAT gamma-ray source in 3LAC and 3FHL catalogs.
- No kpc-scale radio emission, but not classified as GPS/CSO due to flat radio spectrum.
- Detected by ROSAT in keV X-ray regime.
- WISE infrared colors place it in the blazar colorcolor strip but outside the gamma-ray blazar region (Massaro et al. 2012).

Pushkarev et al. (MOJAVE website)

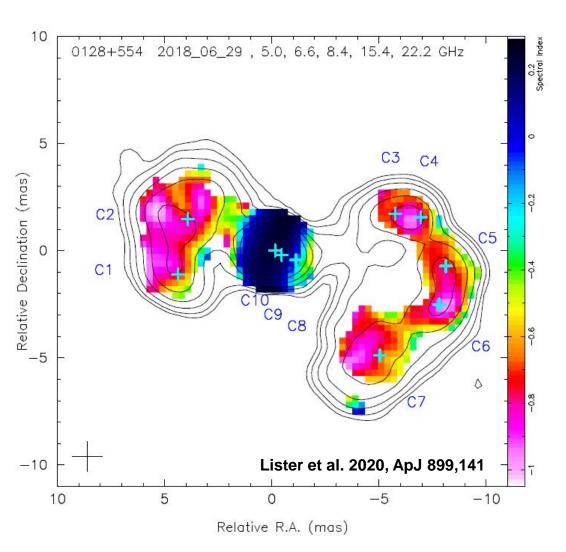
Chandra X-ray Observations

- Observed in March 2019 with Chandra ACIS-S.
- Data fit with absorbed power law model, photon index $\Gamma = 2.4$ between 0.5 keV and 10 keV.
- Possible thermal component present with kT < 0.08 keV.
- N_H column density of 6.7 x 10²¹ cm⁻² consistent with N_{HI} – linear size relation for CSOs (Philström et al. 2003), but at high end of scatter.
 - \rightarrow may indicate an atypically dense neutral medium.

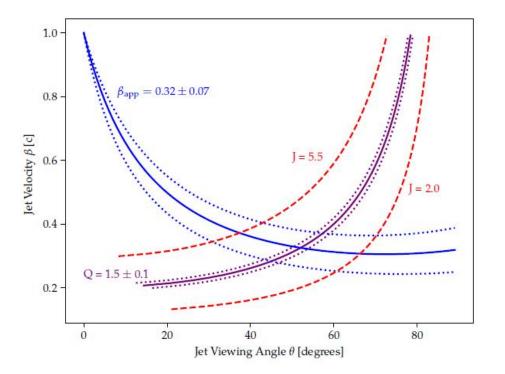

The galaxy is a point-source X-ray emitter in a 19 ksec Chandra exposure.

Multifrequency VLBA Observations: 2.3 GHz to 23 GHz

- Observed with VLBA in June 2018 with spatial resolution ranging from 4 pc to 0.3 pc.
- Relativistic jets are inflating an ellipsoid plasma cocoon
 ~ 16 pc in diameter.
- Strong flat spectrum core (T_b ~ 10¹⁰ K) is indicative of current jet activity.


Lister et al. 2020, ApJ 899,141

MOJAVE VLBA Monitoring


- 8 epochs at 15 GHz from 2016-2019.
- Cocoon expanding at 0.3 c
 → started growing ~80 yr ago.
- Gap in emission between inner jet and outer shell.
- After going dormant, AGN launched a new inner jet a decade ago.

http://www.physics.purdue.edu/MOJAVE

Spectral Index Map

- Flat-spectrum core and inner jet region.
- No flat-spectrum (active) hotspots.
- C2 and C6 are aligned with inner jet direction.
- No detectable core shift between frequencies.
 - unusual for flat-spectrum AGN core.
 - may indicate core is a standing recollimation shock.

Lister et al. 2020, ApJ 899,141

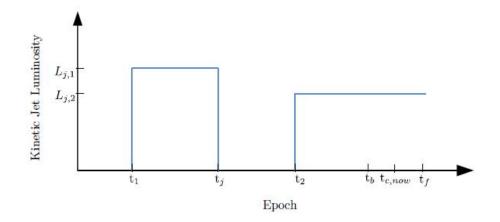
Jet Speed and Viewing Angle

- Constrained by:
 - i. western lobe expansion speed (blue)
 - ii. jet/counterjet flux ratio J (red)
 - iii. jet/counterjet length ratio Q (purple)
- Intersection point is $\theta = 52 \pm 8^{\circ}$, v = 0.3 ± 0.07 c
- Doppler factors are = 1.2 (approaching) and = 0.79 (receding) jet.
- Kinematic age of W lobe is 82 \pm 17 years.

"Twin Paradox"

• The eastern (receding) lobe looks smaller (and younger) since its light has travelled a longer distance to reach us.

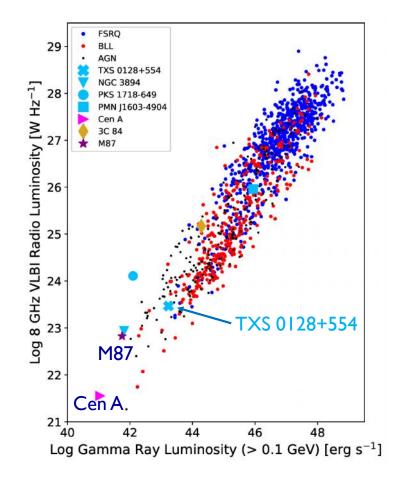
Top down view


What we see on the sky

Jet History

- I. Outer lobes started forming 82 \pm 17 years ago.
- 2. Jets turned off, creating an emission gap.
- 3. Outer shell no longer actively been fed by the AGN.
- 4. Inner jets re-launched roughly a decade ago.

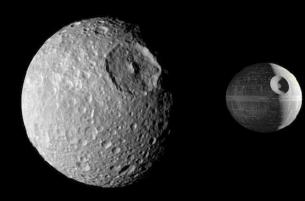
- predicts correct synchrotron luminosity (L = 10⁴¹ erg/s), SSA turnover frequency (630 MHz), B field (5 20 mG)
- underpredicts gamma-ray emission by three orders of magnitude
- \rightarrow gamma-rays are being emitted from the inner jet/core region.

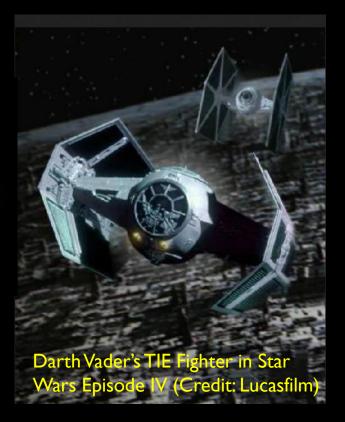

A New Class of Gamma-ray AGN

Source Name	z	D _L [Mpc]	Host Galaxy	kpc morph.	LLS [pc]	θ [°]	$\beta_{app} \\ [c]$	Age [y]	ν_m [GHz]	f
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
			F	ermi-detee	ted CS	Os				
TXS 0128+554	0.036	159	Elliptical	С	12	52^{+7}_{-9}	0.32 ± 0.07	82 ± 17	0.66	0.48
NGC 3894	0.011	47	Elliptical	E	7	10-21	~ 0.1	59 ± 5	5	0.18
PKS 1718-649	0.014	62	Ellipticala	C	2.5		0.06 ± 0.03	70 ± 30	3.6	< 0.01
PMN J1603-4904	0.232	1148	Unknownb	E	56	1.1.1	< 3	> 54	0.39	0.37

 a Host has an elliptical nucleus with a prominent dust lane, surrounded by faint spiral structure.

 b No indications of active star formation in optical spectrum (Goldoni et al. 2016).


- TXS 0128+554 lies at extreme low luminosity end of Fermidetected AGNs.
- Similar properties to NGC 3894 and PKS 1718-649, but much higher 8 GHz radio core fraction (f = 0.48).
 - All three have much lower luminosity than typical CSOs.



Summary

- Compact Symmetric Objects are a new (rare) class of misaligned gamma-ray emitting AGN.
- TXS 0128+554 is likely detected by Fermi due to a new jet producing powerful gamma-ray emission.

TXS 0128+554: A Young Gamma-Ray Emitting AGN With Episodic Jet Activity, M. L. Lister, D. C. Homan, Y. Y. Kovalev, S. Mandal, A. B. Pushkarev, & A. Siemiginowska, *Astrophysical Journal*, **899**, id. 141, 15 pages (2020)

Joins the 'Death Star' moon Mimas in the Star Wars – Astronomy pantheon.

TXS 0128+554