Powerful Quasars with Young Jets Revealed by Multi-Epoch Radio Surveys

Kristina Nyland (NRC Postdoctoral Fellow, resident at NRL)

kristina.nyland.ctr@nrl.navy.mil

CSSGPS Workshop – May 10, 2021

Powerful Quasars with Young Jets

THE ASTROPHYSICAL JOURNAL, 905:74 (22pp), 2020 December 10 © 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/abc341

Quasars That Have Transitioned from Radio-quiet to Radio-loud on Decadal Timescales Revealed by VLASS and FIRST

Kristina Nyland¹, Dillon Z. Dong², Pallavi Patil^{3,4}, Mark Lacy³, Sjoert van Velzen^{5,6}, Amy E. Kimball⁷, Sumit K. Sarbadhicary⁸, Gregg Hallinan², Vivienne Baldassare^{9,22}, Tracy E. Clarke¹⁰, Andy D. Goulding¹¹, Jenny Greene¹¹, Andrew Hughes¹², Namir Kassim¹⁰, Magdalena Kunert-Bajraszewska¹³, Thomas J. Maccarone¹⁴, Kunal Mooley¹⁵, Dipanjan Mukherjee¹⁶, Wendy Peters¹⁰, Leonid Petrov¹⁷, Emil Polisensky¹⁰, Wiphu Rujopakarn^{18,19}, Mark Whittle⁴, and Mattia Vaccari^{20,21}, Kushington, DC 20375, USA

Kristina Nyland (NRC Postdoctoral Fellow, resident at NRL)

kristina.nyland.ctr@nrl.navy.mil

CSSGPS Workshop – May 10, 2021

5/10/21

Dr. Kristina Nyland

The Evolving Radio Properties of Young Jets

5/9/21

See talks by: Aleksandra Wołowska (5/11), Monica Orienti (5/11), & Kathryn Ross (5/13)

5/10/21

VLA Sky Survey

Frequency	2-4 GHz
$oldsymbol{ heta}_{FWHM}$	2.5″
Area	33,885 deg ²
Epochs	3

Lacy et al. 2020

cirada.ca

NVSS FIRST VLASS

Increasing angular resolution \rightarrow

5/9/21

Catching Young Jets with Multi-epoch Radio Data

5/10/21

Sample Properties

- Redshifts (13/26): 0.2 < z < 3.2
- $\log(L_{VLASS}/\text{erg s}^{-1}) \approx 40 42$
- $\log(L_{bol}/\text{erg s}^{-1}) \approx 45.2 46.8$
- log(M_{SMBH}/M_☉) ≈ 8.0 9.7

5/9/21

Example SDSS Images and Spectra

Dr. Kristina Nyland

Simultaneous Multi-band VLA Follow-up

- Verification of VLASS quick look images
- Single-band variability measurements
- Radio **spectral curvature** (1-18 GHz)

Projects: 19A-422 (PI – Hallinan) 20B-329, 20B-459 (PI – Nyland)

Radio Variability Constraints

Intrinsic Radio Variability Scenarios

5/9/21

5/9/21

Radio Spectral Shapes

Dr. Kristina Nyland

19

Origin of the Absorption?

5/9/21

Size Constraints from Turnover-size Relation

Turnover-Size Relation: Age Constraint Example

Spectral peak: 15 GHz (= 40 GHz in restframe)

Size estimate: ~1-10 pc

Young Jet!

5/9/21

Radio AGN Life Stages

Implications for Galaxy Evolution

Sky density: $4 \times 10^{-3} \text{ deg}^{-2} \rightarrow \text{ period of}$ occurrence = 10^5 yr

Nyland et al. 2020

Episodic, short-lived jets common at $z = 1-3 \rightarrow$ *Jet-ISM feedback?*

Image credit: Sophia Dagnello; NRAO/AUI/NSF

Dr. Kristina Nyland

24

5/9/21

Connection with Quasar Reddening (and Mergers?)

On-going and Future Work

Dr. Kristina Nyland

- Continued radio SED monitoring (VLA)
- Milliarcsecond-scale imaging (VLBA)
- X-ray accretion state/morphology (new Cycle 22 *Chandra* data)
- Optical variability, host properties (new ground-based data, *HST*?)
- ISM content and conditions (ALMA?)

5/9/21

Nyland et al. 2020

Radio jets may "switch-on" over human timescales

Multi-epoch radio surveys catch newborn jets!

Short-lived jets common at $z=1-3 \rightarrow jet-ISM$ feedback?

kristina.nyland.ctr@nrl.navy.mil

5/9/21

Extra Slides

Imaging Compact Jets with the ngVLA

Bmax = 1000 km $\boldsymbol{\theta}_{max}$ = 0.5 to 44 mas Nyland et al. 2018

ngVLA will probe jet-ISM feedback on sub-galactic scales of 10 pc to 1 kpc

Simulated ngVLA Images of Radio Jets

5/9/21

Dr. Kristina Nyland

Origin of the Variability: Intrinsic Effects?

Identifying Young Jets: Radio Surveys

Differences:

- Sensitivity
- Resolution
- Frequency
- Bandwidth
- Cadence

Figure based on Callingham et al. 2017

VLITE: The VLA Low-band Ionosphere & Transient Experiment

- **Commensal 340 MHz system** operating on 16 antennas of the Very Large Array
 - > RFI-free bandwidth: ~40 MHz
 - Resolution: up to ~5"
- Data are recorded *simultaneously* during most regular VLA observations
 - VLITE Commensal Sky Survey (VCSS) operates alongside VLA Sky Survey

vlite.nrao.edu

5/9/21

VLITE 6 year benchmark: 37,589 hours of data!

