Unmasking the history of \textbf{3C293} with LOFAR sub-arcsecond imaging

Pranav Kukreti1,2 - 2nd year PhD student

Raffaella Morganti2,1, Timothy Shimwell2,3 and others (Kukreti et al. 2021, submitted)

1. Kapteyn Astronomical Institute, University of Groningen
2. ASTRON, the Netherlands Institute for Radio Astronomy
3. Leiden Observatory, Leiden University
• Active galactic nuclei (AGNs) show episodic activity. Restarted radio AGNs crucial to understand AGN life cycle - can constrain time scales of activity and quiescence.

for a review, see Saikia & Jamrozy 2009
• Active galactic nuclei (AGNs) show episodic activity. Restarted radio AGNs crucial to understand AGN life cycle - can constrain time scales of activity and quiescence.

for a review, see Saikia & Jamrozy 2009

• Life of a radio AGN understood to start from a CSS/GPS phase.

O'Dea 1998, Fanti 2009, O'Dea and Saikia 2020
Active galactic nuclei (AGNs) show episodic activity. Restarted radio AGNs crucial to understand AGN life cycle - can constrain time scales of activity and quiescence.

For a review, see Saikia & Jamrozy 2009

Life of a radio AGN understood to start from a CSS/GPS phase.

O'Dea 1998, Fanti 2009, O'Dea and Saikia 2020

Initial phase of activity for $\sim 10^7 - 10^8$ yr, followed by an off phase that lasts $\sim 10^5 - 10^7$ yr. Cessation of activity can cause spectral steepening due to radiative losses - remnant plasma lobes.

Hardcastle 2018, Nandi et al. 2019
Active galactic nuclei (AGNs) show episodic activity. Restarted radio AGNs crucial to understand AGN life cycle - can constrain time scales of activity and quiescence.

Life of a radio AGN understood to start from a CSS/GPS phase.

Initial phase of activity for $\sim 10^7$-10^8 yr, followed by an off phase that lasts $\sim 10^5$-10^7 yr. Cessation of activity can cause spectral steepening due to radiative losses - remnant plasma lobes.

Identifying restarted AGNs— Spectral properties - Ultra steep spectrum ($\alpha > 1.2$), Spectral curvature ($\Delta \alpha \gtrsim 0.5$)
• Active galactic nuclei (AGNs) show episodic activity. Restarted radio AGNs crucial to understand AGN life cycle - can constrain time scales of activity and quiescence. For a review, see Saikia & Jamrozy 2009

• Life of a radio AGN understood to start from a CSS/GPS phase. O’Dea 1998, Fanti 2009, O’Dea and Saikia 2020

• Initial phase of activity for \(\sim 10^7-10^8\) yr, followed by an off phase that lasts \(\sim 10^5-10^7\) yr. Cessation of activity can cause spectral steepening due to radiative losses - remnant plasma lobes. Hardcastle 2018, Nandi et al. 2019

• Identifying restarted AGNs— Spectral properties - Ultra steep spectrum \((\alpha>1.2)\), Spectral curvature \((\Delta \alpha \geq 0.5)\) Brienza et al. 2020, Morganti et al. 2020 etc.
Introduction

B2 0258+35 - Brienza et al. 2018

NGC 3998 - Sridhar et al. 2020

Centaurus A - McKinley et al. 2018
Introduction

• Over the past few years, a new sub-group restarted AGNs with -
Introduction

- Over the past few years, a new sub-group restarted AGNs with -

 (i) no ultra steep spectrum - $\alpha > 1.2$
Introduction

• Over the past few years, a new sub-group restarted AGNs with -

 (i) no ultra steep spectrum - $\alpha > 1.2$

 (ii) no steep curvature $\Delta \alpha \gtrsim 0.5$
Introduction

- Over the past few years, a new sub-group restarted AGNs with:

 (i) no ultra steep spectrum - $\alpha > 1.2$

 (ii) no steep curvature $\Delta \alpha \gtrsim 0.5$

- Bright inner jets and diffuse outer lobes with a homogeneous spatial distribution of α
Introduction

- Over the past few years, a new sub-group restarted AGNs with -

 (i) no ultra steep spectrum - $\alpha > 1.2$

 (ii) no steep curvature $\Delta \alpha \gtrsim 0.5$

- Bright inner jets and diffuse outer lobes with a homogeneous spatial distribution of α

- These galaxies are evidence for short interruption or activity never stopping - important to understand duty cycle of radio AGNs. These galaxies are different from model of typical restarted galaxies where fuelling of outer lobes has stopped.

Jurlin et al. 2020
Over the past few years, a new sub-group restarted AGNs with -

(i) no ultra steep spectrum - $\alpha > 1.2$

(ii) no steep curvature $\Delta \alpha \gtrsim 0.5$

Bright inner jets and diffuse outer lobes with a homogeneous spatial distribution of α

These galaxies are evidence for short interruption or activity never stopping - important to understand duty cycle of radio AGNs. These galaxies are different from model of typical restarted galaxies where fuelling of outer lobes has stopped. Jurlin et al. 2020

Physical mechanisms responsible still under debate. Gas rich hosts and sometimes mergers.
Introduction

- Over the past few years, a new sub-group restarted AGNs with -

 (i) no ultra steep spectrum - $\alpha > 1.2$

 (ii) no steep curvature $\Delta \alpha \gtrapprox 0.5$

- Bright inner jets and diffuse outer lobes with a homogeneous spatial distribution of α

- These galaxies are evidence for short interruption or activity never stopping - important to understand duty cycle of radio AGNs. These galaxies are different from model of typical restarted galaxies where fuelling of outer lobes has stopped.
 \cite{Jurlin2020}

- Physical mechanisms responsible still under debate. Gas rich hosts and sometimes mergers.

- Spatially resolved spectral properties need to be investigated to identify more such galaxies.
Introduction
Introduction

- Characterising spectral properties is challenging.
Introduction

• Characterising spectral properties is challenging.

• International LOFAR telescope allows us to resolve low frequency emission with sub-arcsecond resolution.
Introduction

- Characterising spectral properties is challenging.

- International LOFAR telescope allows us to resolve low frequency emission with sub-arcsecond resolution.
Introduction

- Characterising spectral properties is challenging.

- International LOFAR telescope allows us to resolve low frequency emission with sub-arcsecond resolution.

- 13 international stations - max baseline 1989 km - 0.27" at 150 MHz.
3C293

RGB colour image from DECaLS (Dey et al. 2019)
CO (1-0) image from Labiano et al. 2014
Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\, \text{GHz}) = 2 \times 10^{25}\, \text{W/Hz}$, border of FRI/FRII.
Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\,\text{GHz}) = 2 \times 10^{25} \,\text{W/Hz}$, border of FRI/FRII

- Large scale ~ 220 kpc radio lobes

3C293

- Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\,\text{GHz}) = 2 \times 10^{25} \,\text{W/Hz}$, border of FRI/FRII
- Large scale ~ 220 kpc radio lobes
3C293

- Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\,\text{GHz}) = 2 \times 10^{25}\,\text{W/Hz}$, border of FRI/FRII
- Large scale $\sim 220\,\text{kpc}$ radio lobes
- Small scale $\sim 4.5\,\text{kpc}$ structure in the centre, eastern lobe approaching us.

RGB colour image from DECaLS (Dey et al. 2019)
CO (1-0) image from Labiano et al. 2014
Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\text{GHz}) = 2 \times 10^{25} \text{ W/Hz}$, border of FRI/FRII

- Large scale ~ 220 kpc radio lobes
- Small scale ~ 4.5 kpc structure in the centre, eastern lobe approaching us.
- Double double morphology make 3C293 a candidate restarted galaxy

RGB colour image from DECaLS (Dey et al. 2019)

CO (1-0) image from Labiano et al. 2014
Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\,\text{GHz}) = 2 \times 10^{25}\,\text{W/Hz}$, border of FRI/FRII

- Large scale ~220 kpc radio lobes
- Small scale ~4.5 kpc structure in the centre, eastern lobe approaching us.
- Double double morphology make 3C293 a candidate restarted galaxy
- Integrated spectrum study provides an interruption of activity time scale of ~0.1 Myr.

Joshi et al. 2011, Machalski et al. 2016
• Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\,\text{GHz}) = 2 \times 10^{25}\,\text{W/Hz}$, border of FRI/FRII

• Large scale ~ 220 kpc radio lobes

• Small scale ~ 4.5 kpc structure in the centre, eastern lobe approaching us.

• Double double morphology make 3C293 a candidate restarted galaxy

• Integrated spectrum study provides an interruption of activity time scale of ~ 0.1 Myr.

Joshi et al. 2011, Machalski et al. 2016

• Strong jet-ISM interaction and gas rich host galaxy. Is this another galaxy in this new sub-group?
Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\text{GHz}) = 2 \times 10^{25} \text{W/Hz}$, border of FRI/FRII

Large scale ~ 220 kpc radio lobes

Small scale ~ 4.5 kpc structure in the centre, eastern lobe approaching us.

Double double morphology make 3C293 a candidate restarted galaxy

Integrated spectrum study provides an interruption of activity time scale of ~ 0.1 Myr.

Strong jet-ISM interaction and gas rich host galaxy. Is this another galaxy in this new sub-group?
Radio galaxy at $z=0.045$ hosted by a merger. $L(1.4\text{GHz}) = 2\times10^{25}\text{W/Hz}$, border of FRI/FRII

- Large scale $\sim 220\text{ kpc}$ radio lobes
- Small scale $\sim 4.5\text{ kpc}$ structure in the centre, eastern lobe approaching us.
- Double double morphology make 3C293 a candidate restarted galaxy
- Integrated spectrum study provides an interruption of activity time scale of $\sim 0.1\text{ Myr}$.

- Strong jet-ISM interaction and gas rich host galaxy. Is this another galaxy in this new sub-group?

Spatially resolved spectral study required! (for spectral properties with distance from centre)
LOFAR observations
LOFAR observations

- Targeted observations of 3C293 on 30Jul2020 and 02Aug2020 for 4 hrs each
LOFAR observations

- Targeted observations of 3C293 on 30Jul2020 and 02Aug2020 for 4 hrs each
• Targeted observations of 3C293 on 30Jul2020 and 02Aug2020 for 4 hrs each

• Data calibrated using the LOFAR long baseline pipeline - Morabito et al. (in prep.)
LOFAR observations

- Targeted observations of 3C293 on 30Jul2020 and 02Aug2020 for 4 hrs each
- Data calibrated using the LOFAR long baseline pipeline - Morabito et al. (in prep).
• Targeted observations of 3C293 on 30Jul2020 and 02Aug2020 for 4 hrs each

• Data calibrated using the LOFAR long baseline pipeline - Morabito et al. (in prep).

• Resolution 0.26"x 0.15" at 144 MHz with an RMS noise of ~0.2 mJy/bm.
LOFAR observations

- Targeted observations of 3C293 on 30Jul2020 and 02Aug2020 for 4 hrs each
- Data calibrated using the LOFAR long baseline pipeline - Morabito et al. (in prep).
- Resolution 0.26”x 0.15” at 144 MHz with an RMS noise of ~0.2 mJy/bm.
• Targeted observations of 3C293 on 30Jul2020 and 02Aug2020 for 4 hrs each

• Data calibrated using the LOFAR long baseline pipeline - Morabito et al. (in prep).

• Resolution 0.26"x 0.15" at 144 MHz with an RMS noise of ~0.2 mJy/bm.
What causes the absorption?
What causes the absorption?

- **Synchrotron Self-Absorption (SSA)** gives unrealistically high magnetic field strengths (~10^2 G !)
What causes the absorption?

- **Synchrotron Self-Absorption (SSA)** gives unrealistically high magnetic field strengths (~10^2 G !)

- Significantly higher than equipartition estimates of ~220 μG, and ~ 4-15 mG of similar CSS sources (3C48, 3C138, 3C147 etc)
• **Synchrotron Self-Absorption (SSA)** gives unrealistically high magnetic field strengths (~10^2 G !)

• Significantly higher than equipartition estimates of ~220 µG, and ~ 4-15 mG of similar CSS sources (3C48, 3C138, 3C147 etc) O’Dea 1998, Orienti and Dallacasa 2008

• **Free-free absorption (FFA)** - Optical depth (ν_p) is higher for the western lobe (W1) than eastern lobe (E1) by 3σ - expected from FFA! for e.g. Kameno et al. 2000, 2001, Jones et al. 2001

What causes the absorption ?

![Absorption model fits](image)
• **Synchrotron Self-Absorption (SSA)** gives unrealistically high magnetic field strengths (~10^2 G !)

• Significantly higher than equipartition estimates of ~220 μG, and ~ 4-15 mG of similar CSS sources (3C48, 3C138, 3C147 etc) O’Dea 1998, Orienti and Dallacasa 2008

• **Free-free absorption (FFA)** - Optical depth (νp) is higher for the western lobe (W1) than eastern lobe (E1) by 3σ - expected from FFA! for e.g. Kameno et al. 2000, 2001, Jones et al. 2001

• Using n_e = 200 cm^-3 for narrow line region clouds (Emonts et al. 2005), and a filling factor of f = 4.3x10^-6, gives L = 50 pc for E1 and L = 80 pc for W1 - easily achievable in 3C293. O’Dea 1998

What causes the absorption?
What causes the absorption?

- **Synchrotron Self-Absorption (SSA)** gives unrealistically high magnetic field strengths (~10^2 G !)

- Significantly higher than equipartition estimates of $\sim 220 \mu$G, and ~ 4-15 mG of similar CSS sources (3C48, 3C138, 3C147 etc)

 O’Dea 1998, Orienti and Dallacasa 2008

- **Free-free absorption (FFA)** - Optical depth (ν_p) is higher for the western lobe (W1) than eastern lobe (E1) by 3σ - expected from FFA!

 for e.g. Kameno et al. 2000, 2001, Jones et al. 2001

- Using $n_e = 200 \text{ cm}^{-3}$ for narrow line region clouds (Emonts et al. 2005), and a filling factor of $f = 4.3 \times 10^{-6}$, gives $L = 50 \text{ pc}$ for E1 and $L = 80 \text{ pc}$ for W1 - easily achievable in 3C293.

 O’Dea 1998

Inner lobes a young CSS with FFA the most plausible dominant mechanism!
• **Synchrotron Self-Absorption (SSA)** gives unrealistically high magnetic field strengths (~10^2 G !)

• Significantly higher than equipartition estimates of ~220 μG, and ~ 4-15 mG of similar CSS sources(3C48, 3C138, 3C147 etc)

 O'Dea 1998, Orienti and Dallacasa 2008

• **Free-free absorption (FFA)** - Optical depth (ν_p) is higher for the western lobe (W1) than eastern lobe (E1) by 3σ - expected from FFA!

 for e.g. Kameno et al. 2000, 2001, Jones et al. 2001

• Using $n_e = 200$ cm$^{-3}$ for narrow line region clouds (Emonts et al. 2005), and a filling factor of $f = 4.3 \times 10^{-6}$, gives $L = 50$ pc for E1 and $L = 80$ pc for W1 - easily achievable in 3C293.

 O'Dea 1998

Inner lobes a young CSS with FFA the most plausible dominant mechanism!

• Inner lobes interacting with surrounding medium, confined by dense ISM - “frustration”?.

What is the origin of the diffuse emission around inner lobes?
What is the origin of the diffuse emission around inner lobes?

- Spectral age ≤ 0.18 Myr assuming optically thin spectra, hard to rule out low frequency absorption.
• Spectral age $\lesssim 0.18$ Myr assuming optically thin spectra, hard to rule out low frequency absorption.

• Steeper spectra and morphology suggest it could be from an older phase of activity. [Akujor et al. 1996]
What is the origin of the diffuse emission around inner lobes?

- Spectral age $\lesssim 0.18$ Myr assuming optically thin spectra, hard to rule out low frequency absorption.

- Steeper spectra and morphology suggest it could be from an older phase of activity. [Akujor et al. 1996]

- Recent simulations have shown that jets inclined to disc plane would deflect and decelerate, with plasma leakage along the path of least resistance. [Mukherjee et al. 2018]
What is the origin of the diffuse emission around the inner lobes?

- Spectral age \(\lesssim 0.18 \) Myr assuming optically thin spectra, hard to rule out low frequency absorption.
- Steeper spectra and morphology suggest it could be from an older phase of activity. [Akujor et al. 1996]
- Recent simulations have shown that jets inclined to disc plane would deflect and decelerate, with plasma leakage along the path of least resistance. [Mukherjee et al. 2018]
- Leakage from decelerated plasma could form the low surface brightness diffuse emission.
Are the outer lobes still alive?
Are the outer lobes still alive?

Possible scenarios -
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
 - The bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.
Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.

 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.

 - short interruption - no ultra steep spectrum

Are the outer lobes still alive?
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.
 - short interruption - no ultra steep spectrum
 - inner lobes represent new phase of activity.
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.

 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.

 - short interruption - no ultra steep spectrum

 - inner lobes represent new phase of activity.

OR/AND
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.

 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.

 - short interruption - no ultra steep spectrum

 - inner lobes represent new phase of activity.

 OR/AND

2. AGN has not switched off, outer lobe still fuelled
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.
 - short interruption - no ultra steep spectrum
 - inner lobes represent new phase of activity.

 OR/AND

2. AGN has not switched off, outer lobe still fuelled
 - strong jet-ISM interaction disrupts jet flow, which becomes decollimated and turbulent
Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.

 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.

 - short interruption - no ultra steep spectrum

 - inner lobes represent new phase of activity.

 OR/AND

2. AGN has not switched off, outer lobe still fuelled

 - strong jet-ISM interaction disrupts jet flow, which becomes decollimated and turbulent

 - turbulence powered by the centre, prevents spectra from steepening

Are the outer lobes still alive?
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.
 - short interruption - no ultra steep spectrum
 - inner lobes represent new phase of activity.

 OR/AND

2. AGN has not switched off, outer lobe still fuelled
 - strong jet-ISM interaction disrupts jet flow, which becomes decollimated and turbulent
 - turbulence powered by the centre, prevents spectra from steepening
 - inner lobes “frustrated” by surrounding ISM
Are the outer lobes still alive?

Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.
 - short interruption - no ultra steep spectrum
 - inner lobes represent new phase of activity.

OR/AND

2. AGN has not switched off, outer lobe still fuelled
 - strong jet-ISM interaction disrupts jet flow, which becomes decollimated and turbulent
 - turbulence powered by the centre, prevents spectra from steepening
 - inner lobes “frustrated” by surrounding ISM
 - we do not see any plasma transport channel
Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.
 - short interruption - no ultra steep spectrum
 - inner lobes represent new phase of activity.

OR/AND

2. AGN has not switched off, outer lobe still fuelled
 - strong jet-ISM interaction disrupts jet flow, which becomes decollimated and turbulent
 - turbulence powered by the centre, prevents spectra from steepening
 - inner lobes “frustrated” by surrounding ISM
 - we do not see any plasma transport channel
Possible scenarios -

1. Outer lobe represent older phase(s) of activity, interrupted for a very short time.
 - the bright emission regions in the lobe could be from different phases of activity. Shocks caused by newer jet material (O1) expanding into the older lobe material (O2) would power the turbulence.
 - short interruption - no ultra steep spectrum
 - inner lobes represent new phase of activity.

 OR/AND

2. AGN has not switched off, outer lobe still fuelled
 - strong jet-ISM interaction disrupts jet flow, which becomes decollimated and turbulent
 - turbulence powered by the centre, prevents spectra from steepening
 - inner lobes “frustrated” by surrounding ISM
 - we do not see any plasma transport channel

Outer lobe of 3C293 is still alive!
Summary

- We observe for the first time, absorption in the inner lobes of 3C293 with a peak frequency of ~235 MHz, due to free-free absorption from the NLR.
• We observe for the first time, absorption in the inner lobes of 3C293 with a peak frequency of ~235 MHz, due to free-free absorption from the NLR.

• Age, size and presence of turnover concludes inner lobes are a young CSS source whose growth is affected by the surrounding medium.
Summary

• We observe for the first time, absorption in the inner lobes of 3C293 with a peak frequency of ~235 MHz, due to free-free absorption from the NLR.

• Age, size and presence of turnover concludes inner lobes are a young CSS source whose growth is affected by the surrounding medium.

• Diffuse emission possibly formed by leakage of radio plasma from the jet, deflected and decelerated by interaction with the disc.
Summary

- We observe for the first time, absorption in the inner lobes of 3C293 with a peak frequency of ~235 MHz, due to free-free absorption from the NLR.

- Age, size and presence of turnover concludes inner lobes are a young CSS source whose growth is affected by the surrounding medium.

- Diffuse emission possibly formed by leakage of radio plasma from the jet, deflected and decelerated by interaction with the disc.

- Spectral properties of outer lobes suggest multiple phases of jet activity with short interruption phase (in agreement with Jurlin et al. 2020) or (and) the activity never really stops (low level fuelling). Outer lobes are still alive!
• We observe for the first time, absorption in the inner lobes of 3C293 with a peak frequency of ~235 MHz, due to free-free absorption from the NLR

• Age, size and presence of turnover concludes inner lobes are a young CSS source whose growth is affected by the surrounding medium.

• Diffuse emission possibly formed by leakage of radio plasma from the jet, deflected and decelerated by interaction with the disc.

• Spectral properties of outer lobes suggest multiple phases of jet activity with short interruption phase (in agreement with Jurlin et al. 2020) or (and) the activity never really stops (low level fuelling). Outer lobes are still alive!

• This adds 3C293 to a new sub group of galaxies with a life cycle different from model of typical restarted galaxies - short interruption or activity doesn’t really stop. Possible link to them being gas rich and sometimes a merger?
Summary

• We observe for the first time, absorption in the inner lobes of 3C293 with a peak frequency of ~235 MHz, due to free-free absorption from the NLR

• Age, size and presence of turnover concludes inner lobes are a young CSS source whose growth is affected by the surrounding medium.

• Diffuse emission possibly formed by leakage of radio plasma from the jet, deflected and decelerated by interaction with the disc.

• Spectral properties of outer lobes suggest multiple phases of jet activity with short interruption phase (in agreement with Jurlin et al. 2020) or (and) the activity never really stops (low level fuelling). Outer lobes are still alive!

• This adds 3C293 to a new sub group of galaxies with a life cycle different from model of typical restarted galaxies - short interruption or activity doesn’t really stop. Possible link to them being gas rich and sometimes a merger?

• ILT allows studying the small scale CSS emission and large scale lobe emission simultaneously! Synergy with APERTIF and WEAVE will be useful to explore the link between their life-cycle and gas properties!