The odd-looking GPS quasar 0858-279

N. A. Kosogorov (MIPT, Lebedev), Y. Y. Kovalev (Lebedev, MIPT, MPIfR), M. Perucho (U. Valencia), Yu. A. Kovalev (Lebedev)

MNRAS submitted, arxiv.org/abs/2104.08544

The study was funded by the RSF grant 16-12-10481

0858–279 spectrum and light curve

Multi-epoch radio spectrum (on the left) and multi-frequency light curve (on the right), RATAN-600 data.

Extended structure (12 mas, 95 pc)

Short variability timescale (~months)

VLBA Calibrator Search program image at 2.2 GHz

Observations

RATAN-600, 8 frequencies, 1997-2020

VLBA, 6 frequencies, 2005 Nov

Stokes I maps

Total intensity map at 1.5 GHz

Total intensity map at 22.2 GHz

Parsec-scale spectral properties and magnetic field estimation

model B = (0.55 ± 0.37)δ G

Variability Doppler factor

Flares were modeled using the exponential form (e.g., Valtaoja et al. 1999) $\delta = 5.8 \pm 3.4 \longrightarrow B \approx 3 \text{ G}$

Polarization properties

Fractional polarization map at 22.2 GHz (on the left) and rotation measure map for 15.4-22.2 GHz (on the right)

Magnetic field structure

Magnetic field direction at 22.2 GHz

- Corrected for Faraday rotation
- Corrected by 90° at 22 and 15 GHz due to opacity
- Coincided at lowest and highest frequencies within the errors
- Perpendicular to the jet propagation

Core magnetic field estimation

Standing shock wave Core-shift approach $\Delta r_{15-22GHz} = 0.06 \pm 0.03$ mas Magnetic field behind the shock front B_{core} ≈ 0.2 G Magnetic flux conservation B_{core} ≈ 0.3 G B_{jet} ≈ 3 G

Ridge line

Ridge line at 22 GHz Red dots show the locations of peaks of Gaussian components

Spectral index distribution along the ridge line

Spectral index distribution for 22-15 GHz (blue), 15-8 GHz (green), intensity distribution (grey) Red lines show the locations of peaks of Gaussian components

Degree of linear polarization

Fractional polarization maps at 22.2 GHz (on the left), 15.4 GHz (on the right)

Rotation measure

Rotation measure maps for 15.4-22.2 GHz (on the left) and 1.4-2.4 GHz (on the right)