# WISE-NVSS SELECTED HEAVILY OBSCURED QUASARS WITH Young Radio Jets





### CSS-GPS WORKSHOP MAY 13, 2021

Pallavi Patil Jansky Fellow National Radio Astronomy Observatory

CAROL LONSDALE, MARK WHITTLE, KRISTINA NYLAND MARK LACY, COLIN LONSDALE, AMY KIMBALL



## TALK OUTLINE

1

Background

A unique sample of heavily obscured quasars VLA Imaging

2

Results from a highresolution VLA imaging survey 3

Radio Spectra

What the radio spectra can tell us



4

A pilot study to probe the dust and molecular gas Ongoing & Future

5

Detailed multiwavelength follow-ups 6

Conclusion



2

# RAPID BLACK HOLE GROWTH TAKES PLACE IN A HEAVILY OBSCURED STATE



Merger triggered SMBH grows rapidly

Interacting with the host via jet, winds and expelling gas/dust

6th CSS GPS Workshop

Credit: RAS, S. Munro





## **RAPID BLACK HOLE GROWTH TAKES PLACE IN A HEAVILY OBSCURED STATE**



6th CSS GPS Workshop

Credit: RAS, S. Munro

Red MIR-Optical colors, episode(s) of young, compact jet activity



## **SELECTION CRITERIA FOR OBSCURED QSO WITH COMPACT RADIO EMISSION**

#### WISE



Bright at 12/22 μm and very red WISE mid-IR colors

6th CSS GPS Workshop

#### NVSS



### Bright and unresolved (<45") radio source

### Optically <u>faint</u> or <u>undetected</u>

See Carol Lonsdale's Talk

#### SDSS/DSS







# THE SAMPLE OF HEAVILY OBSCURED RADIO QUASARS









# **A PANCHROMATIC VIEW OF AN OBSCURED RADIO QUASAR**









## A SAMPLE OF HEAVILY OBSCURED RADIO AGN Created by Carol Lonsdale

#### SUB-ARCSECOND RESOLUTION VLA IMAGING





#### VLA Imaging



#### Radio Spectra

| 4    |     | 5 |     | 6 |
|------|-----|---|-----|---|
| ALMA | A C |   | ure |   |
|      |     |   |     |   |
|      |     |   |     |   |
|      |     |   |     |   |
|      |     |   |     |   |
|      |     |   |     |   |
|      |     |   |     |   |





## SUB-ARCSECOND VLA X-BAND (8-12 GHZ) IMAGING SURVEY

- X-band (8-12 GHz) multi-configuration snapshot survey (A & B) with 0.2" and 0.6" resolution
- Goal: to characterize morphologies and radio spectra of our sample sources





# SUB-ARCSECOND VLA X-BAND (8-12 GHZ) IMAGING SURVEY

- 72% of sources are compact : median
   <0.2"; < 2 kpc at z~2</li>
- 28% of sources are resolved: 0.5"-10";
  4-50 kpc
- A matched MIR blind radio survey (CENSORS) has larger sources: median 6"



4.2 kpc 0.5"



































# THE EVOLUTIONARY STAGE OF THESE SOURCES

#### Many sources are consistent with CSS, GPS sources



6th CSS GPS Workshop

#### Linear Size vs Radio Power Diagram

11

## **APPLICATION OF ADIABATIC LOBE EXPANSION MODEL**



*Ito+2008* 

Under the assumption of adiabatic expansion, the model of a sector of a sec be approximated by analytical expressions of observables

$$p_{l} = 7.76 \times 10^{-10} F_{43} t_{\text{Myr}} R_{l}^{-3}$$
$$p_{l} = 1.17 \times 10^{-9} F_{43}^{2/3} n_{a}^{1/3} R_{l}^{-4/3}$$
$$p_{l} = 1.50 \times 10^{-12} F_{43} (V_{l}/c)^{-1} R_{l}^{-2}$$

Begelman 1996

 $t_{Myr}$  : Age  $p_1$ : Lobe Pressure  $n_a$  : Ambient density  $F_{43}$  : Jet Power  $R_l$  : Lobe Radius  $V_l$  : Lobe Speed

| 1  | 2 |
|----|---|
| са | n |
| 5. |   |

# **APPLICATION OF ADIABATIC LOBE EXPANSION MODEL**



a relatively dense ISM at speeds 0.01c – 0.1c

The model suggests the more compact sources are indeed young ( $10^3 - 10^4$  yrs) and expand into







## A SAMPLE OF HEAVILY OBSCURED AGN

#### WHAT THE RADIO SPECTRA CAN TELL US?



#### Background



#### VLA Imaging



#### Radio Spectra



# 5

#### Ongoing æ Future

Conclu





#### 1011

# **RADIO SPECTRA MODELING: FITTING AND QUALITY ANALYSIS**





# **RADIO SPECTRA MODELING: FITTING AND QUALITY ANALYSIS**

Two functions were fit Power Law:  $S_{\nu} \propto v^{\alpha}$ Parabola:

 $S_{\nu} \propto v^{\alpha} e^{q(ln\nu)^2}$ Curvature Parameter





WENSS SUMSS RACS VCSS Visual inspection of spectra and continuum images to check for resolution effects



## **RADIO SPECTRAL CLASSIFICATION**



## **RADIO SPECTRAL CLASSIFICATION**





# **SPECTRAL SHAPE PARAMETERS AND DISTRIBUTIONS**





# **HIGH FREQUENCY SPECTRAL INDICES**

- Median index = -1.0, steep compared to the canonical value of -0.7
- Possible causes:
  - Resolution effects eliminated these (fever
  - Spectral aging not likely
  - Inverse Compton scattering off CMB no
  - Inverse Compton scattering of AGN radiation - <u>likely</u> due to luminous AGN
  - Dense ambient medium <u>possible</u> as postmerger phase





# LINEAR SIZE VS TURNOVER RELATION

Most of the peaked sources lie close to the relation -> SSA is likely

A few significant outliers -> Possible causes: FFA or lower luminosity for which the relation is not well established.



6th CSS GPS Workshop

Patil+ in prep



## **PEAKED SOURCES: EMITTING REGION SIZES**

If the turnover is due to SSA then,

$$B_{SSA} = 23 \ \frac{\theta_{mas}^4}{S_{peak}^2} \frac{\nu_{peak}^5}{1+z}$$
 Gauss

Under the assumption of equipartition,

$$B_{EQ} \approx 0.0152 \left[ \frac{a}{f_{rl}} \frac{(1+z)^{4-\alpha}}{\theta_{mas}^3} \frac{S_{mJy}}{\nu_{GHz}^{\alpha}} \frac{X_{0.5}(\alpha)}{r_{Mpc}} \right]^{2/7}$$

• Assume these are equal and solve for  $\theta$  and B





# **PEAKED SOURCES: EMITTING REGION SIZES**

- Find  $\theta$  and *B* from joint condition.
- Approximate region sizes ~ 1 100 рс
- High magnetic fields ~ 10 100 mG
- Physical condition in peaked sources are similar to CSS/GPS/HFP sources
- Peaked sources are likely to be young







## **ONGOING PROJECTS AND FUTURE WORK**













# **DIRECT DETECTION OF DENSE MOLECULAR GAS WITH ALMA**

#### J0404-24, z = 1.258



#### J0612-06, z = 0.47



\*Preliminary Result

6th CSS GPS Workshop





**-**∠

4

## **ONGOING PROJECTS AND FUTURE WORK**







5

Ongoing & Future





# MULTI-RESOLUTION AND MULTI-BAND RADIO IMAGING

#### Aim: To obtain multi-frequency images at the similar resolution and build spectral maps

- 3 Radio telescopes
- 5 Observing proposals
- Two subsets: 12 most compact sources and 20 sources with >1-2" emission



6th CSS GPS Workshop



## MILLIARCSECOND SCALE IMAGING WITH VLBA AND e-MERLIN





Well-resolved morphologies on 10-100 mas scales -> recently triggered jets Patil+ in prep





### CONCLUSIONS

#### VLA Imaging

- Sample: WISE-NVSS, z~2 obscured quasars
- +72% are compact: <0.2, <1.7 kpc (near-nuclear)
- \*Intermediate power; high pressures; low space density
- Adiabatic lobe expansion model suggests young ages

Radio Spectra

- + Steep higher frequency spectra: IC losses from MIR?
- +80% of unresolved are curved or peaked
- +LS- $\nu_{peak}$  relation -> SSA
- +SSA+Equipartition yields <100 pc & 10-100 mG

Model yields v. young sources & dense ISM

Pallavi Patil ppatil@nrao.edu

Ongoing and Future Work

+Multi- $\nu$  spectral mapping using **VLA** 

+VLBI maps of very compact sources

+NuSTAR probes AGN and high columns

#### ALMA

ALMA pilot study of dense ISM/CO kinematics

+ A strong continuum is detected and of thermal origin

+ Broad CO lines are seen potentially indicating outflows









# **ADDITIONAL SLIDES**



### **X-BAND IN-BAND SPECTRAL INDICES**

#### $\alpha_{IB}$ Reliability Analysis following Condon+2015



Median index is -1.0

Pallavi Patil

Errors on  $\alpha_{IB}$  are below 0.1 for S/N  $\gtrsim$  70



## **RADIO LUMINOSITY FUNCTION**

#### 1.4 GHz Radio Luminosity Function





Our MIR red sample is rare with ~10× lower space density than GPS, CSS sources and 1000× lower than radio AGN –> consistent with short lifetimes in obscured state.



### **2. RADIO SPECTRAL ANALYSIS**



#### Background

#### Conclusion





### **RADIO SED FITTING: INTERACTIVE TOOL**



# FUTURE OUTLOOK: THE NEXT-GENERATION VERY LARGE ARRAY



- Number of Antennas: ~ 214 (main) + 30 (LBA)
- Frequency Range: 1-116 GHz (detailed radio spectra)
- Resolution: 0.5-44 mas (main) + 0.06-5 mas (LBA)

Background

AGN - Imaging

AGN - Radio Spectra

Faint SMGs



#### Ongoing & Future

#### Conclusion





## YOUNG RADIO AGN IN THE ngVLA ERA



Nyland, Patil+2018

Background

AGN - Imaging

AGN - Radio Spectra

Map inner kpc scales with 10x better sensitivity

Robustly characterize spectral turnover

Patil et al. 2018, ASPC, 517, 595

Faint SMGs

Ongoing & Future





