Mysterious Low-Frequency Variability of PSS

Kat Ross (she/her)
ICRAR, Curtin University
Spectral variability of radio sources at low frequencies

K Ross, J R Callingham, N Hurley-Walker, N Seymour, P Hancock, T M O Franzen, J Morgan, S V White, M E Bell, P Patil

Published: 11 December 2020 Article history

ABSTRACT

Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral variability for a large population of extragalactic radio sources are now possible. Using two epochs of observations from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey that were taken one year apart, we search for spectral variability across 100–230 MHz for 21,558 sources. We present methodologies for detecting variability in the spectrum between epochs and for classifying the type of variability: either as a change in spectral shape or as a uniform change in flux density across the bandwidth. We identify 323 sources with significant spectral variability over a year–long time-scale. Of the 323 variable sources, we classify 51 of these as showing a significant change in spectral shape. Variability is more prevalent in peaked-spectrum sources, analogous to gigahertz–peaked spectrum and compact steep-spectrum sources, compared to typical radio galaxies. We discuss the viability of several potential explanations of the observed spectral variability, such as interstellar scintillation and jet evolution. Our results suggest that the radio sky in the megahertz regime is more dynamic than previously suggested.
The MHz Regime

- Biased towards PSS with peak in MHz
- Dominated by flux from lobes rather than core
- “Larger” of PSS → ~20kpc

Keim et al. 2017

Callingham et al. 2017
Low-Frequency Variability

Intrinsic
- Core of jet evolution
- Internal shocks
- Blazar variability
- Changes in optical depth

Extrinsic
- Interplanetary Scintillation
- Refractive Interstellar Scintillation (RISS)

Spectral Variability
Low Frequency Variability

- **Single frequencies**
  - Hunstead 1972
  - Fanti 1982
  - Bell 2019
- **High frequencies**
  - Torniainen 2005
  - Nyland 2021
  - Wolowska 2021
- **Limited populations**
  - Tingay 2015

Tingay et al. 2017
The GLEAM Survey

Galactic and Extragalactic All-Sky MWA Survey

- 8,000 sq deg
- 16 flux density measurements (100-231MHz)
- 2 epochs, ~1 year apart
  - Franzen et al. 2021

GLEAM Team
Our Survey

Quality Cut Criteria:

- Unresolved (~<2')
- Bright and high S/N (>160mJy, S/N>3)
- High frequency counterpart (SUMSS or NVSS)

Master population: 21, 558 sources

PSS population: 422 (Callingham et al. 2017)
GLEAM J00003-282416

VIP = 10.02
MOSS = 6.49

Flux Density (Jy)

Difference (Jy)

Frequency (MHz)
GLEAM J223933-451414

VIP = 2795.79
MOSS = 95.30
GLEAM J225641-201140

VIP = 1243.68
MOSS = 77.93
Statistical Problem??

1. How do you determine what is variable?
   - 21, 558 sources
   - 16 flux density measurements
   - 2 epochs of observation

2. How do you categorise the type of variability?
   - PSS losing classification
   - Sources becoming PSS
   - Changes in spectral index
   - Uniform increase/decrease across the MWA bandwidth
Variability Index Parameter (VIP)

Based on $\chi^2$ statistic

Uses all 16 individual flux density measurements + errors

Independent of model fitting

$$\text{VIP} = \sum_{i=1}^{n} \frac{(S_{yr1}(i) - S_{yr2}(i))^2}{\sigma_i^2}$$
Measure of Spectral Shape (MOSS)

Also based on $\chi^2$ statistic

Uses all 16 measurements of difference in flux density

Considers the shape of the difference

Independent of model fitting

$$MOSS = \sum_{i=1}^{n} \frac{(\text{diff} - \text{diff}(i))^2}{\sigma_i^2}$$
1. How do you determine what is variable?
   - 21, 558 sources
   - 16 flux density measurements
   - 2 epochs of observation

2. How do you categorise the type of variability?
   - PSS losing classification
   - Sources becoming PSS
   - Changes in spectral index
   - Uniform increase/decrease across the MWA bandwidth
What do we find?

- Identify 323 variable sources (~1%)
- Classify 51 as changing spectral shape (16%)
- 1020 Master pop have AT20G
  - 116 variable sources with AT20G (11%)
  - 24 sources changing spectral shape (21%)
- 295 Master pop known blazars
  - 64 variable sources blazars (22%)
  - 18 sources changing spectral shape (28%)
350 master population *maintain* PSS classification (3%)

83 variable sources maintain PSS classification (26%)
3 Main Possibilities

Scintillation
- RISS is a broadband effect
- Timescale yrs-decades
- Requires compact component <~5mas
  - Keim et al. 2019, Dallacasa et al. 2021

Blazars
- Changing spectral shape previously identified
  - Torniainen et al. 2005
- Changes in flaring state can produce dynamical spectral effects
  - Tatorenko et al. 2019
- Doppler boosting → extreme variability above Compton scattering limit
- Large percentage of variable sources are known blazars already
- Likely compact enough for ISS

Intrinsic source evolution
- Vast possibilities in source evolution
- On these timescales??
What’s Next?

GLEAM J001513-472706

VIP = 463.15
MOSS = 34.89
GLEAM J032213-462646

VIP = 336.17
MOSS = 25.63
Conclusion

Largest spectral variability survey to date
- 21,558 sources surveyed, 16 flux density measurements, 323 variable sources

PSS are intrinsically a variable population compared to typical AGN

Present VIP and MOSS as statistical methods to detect and classify spectral variability

MHz sky is far more variable than expected, implications for SKA?

Currently following up with simultaneous ATCA and MWA observations, high resolution LBA