Simulating the jet-ISM interaction in CSS-GPS galaxies

Dipanjan Mukherjee

IUCAA, India.

In Collaboration with
G. Bicknell (ANU), A. Wagner (University of Tsukuba), N. Nesvadba (OCA, France), R. Morganti (Astron), A. Mignone (University of Torino), G. Bodo (INAF), B. Vaidya (IITI)
Some basic questions

- Two feedback modes in literature: **Quasar vs radio. Oversimplifies impact of jets.**

- **Young/trapped/slow** jets interact with the host’s ISM. Many examples of jet-ISM interaction.

- Radio mode can have the effect of quasar mode, blending the two.

- How is **star-formation rate** regulated by direct interaction?

- Impact on **circum-galactic gas**

Simulations on two scales:
- Jets inside the galaxy's potential ~ 5 kpc -> focus on jet-ISM feedback
- Intermediate length scales 10-20 kpc -> Focus on jet dynamics & non-thermal emission

Relativistic jets with PLUTO RMHD code
~ 20 M CPU hrs and counting
<table>
<thead>
<tr>
<th>No</th>
<th>Geometry</th>
<th>Power Log (P)</th>
<th>Density (nw(_0), in cc)</th>
<th>Inclination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spherical</td>
<td>44</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>44</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>45</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>45</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>45</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>45</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>45</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>46</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Disk</td>
<td>45</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>45</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>45</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>45</td>
<td>200</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>45</td>
<td>200</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>46</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>46</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>46</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>IC 5063</td>
<td>45</td>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>44</td>
<td>200</td>
<td>90</td>
</tr>
</tbody>
</table>

Jet-ISM Simulations

Spherical gas distribution

Densities: nw\(_0\) = 150-2000 cm\(^{-3}\)

Power = 10\(^{44}-10^{46}\) ergs\(^{-1}\)

Disks

Densities: nw\(_0\) = 100-400 cm\(^{-3}\)

Power = 10\(^{45}-10^{46}\) ergs\(^{-1}\)

\(\Theta = 0, 20, 45, 70\)

Gas mass ~ 10\(^9\)-10\(^{10}\) M\(_\odot\)
A Multi-phase ISM

Multiphase ISM and multiphase outflows:

1. Dilute hot energy bubble
2. Shocked dense \((n > 100 \text{ cm}^{-3})\) outflowing gas at \(>100 - 300 \text{ kms}^{-1}\)
3. Less dense \((n \approx 1-10 \text{ cm}^{-3})\) fast flowing \((>1000 \text{ kms}^{-1})\) from sheared cloud material
4. Low power jets remain confined. Less effective in outflow, but shock heats the ISM.

Movie: \(\text{https://youtu.be/Fh5819VkQyw}\)

Mukherjee+2016,2017
Negative feedback: Mass loss

Not enough gas ‘escapes’, depends on density of clouds and jet power.

Galactic Fountains!
The spectra transition from a GPS to a CSS as the jet evolves to larger scales.

Pro: The sims follows the turnover-linear size correlation for some ranges of length scales and reasonable densities.

Con: Depends on the extent of the gas distribution. Our sims: have dense gas ~ 2-3 kpc. So it fails for larger sizes.

Movie: https://youtu.be/2GjKKAP_6J0
Jet-disk interaction

- Inclined jets couple more with turbulent disc.
- Backflow from the jet impacts a much larger part of the disc and engulfs it.
- Local outflows are launched at points of direct interaction

Movie: https://youtu.be/8eeKSc9_AJQ
Gemini observations of Jet-ISM interaction in 4C 31.04

Radio jet ~ 100 pc

Fell ~ 300 pc

Warm H2, shocked, ~\(10^4\) K, ~2 kpc;
blue shifted by \(100\) km s\(^{-1}\)
Observable emission features

Jets induce shocks, can be observable in emission lines.

Increased dispersion perpendicular to jets.

Meenakshi, DM + in prep
Photoionisation using CLOUDY

Perpendicular jet 0°

Inclined jet

Ionisation cone

Partial obscuration

Jet opens up new lines of sight
Inclined jets: IC 5063

Mukherjee+2018a

Position-velocity

Morganti+2015a
Estimating SFR with improved subgrid physics

Standard approaches:

$$\text{SFR} = \frac{M}{t_{ff}} \text{ for } \rho > \rho_{\text{threshold}}, \quad t_{ff} \propto \rho^{-1/2}$$

No input about **turbulent velocity dispersion** or **Mach number**.

Better option: Use a turbulence based SFR prescription (Krumholz+2005, Federrath+2012).
Estimating SFR

- Early times: SFR efficiency decreases, increase in turbulent dispersion (-ve feedback).
- But, shocks increase density.
- Later times: turbulence decays, enhanced density raises efficiency again (+ive feedback)

\(\theta_j \): angle between jet axis and disk-normal

Mandal, DM + in prep
Jet feedback & SFR efficiency

- Positive feedback may not mean strong enhanced of SFR efficiency. **Inefficient positive feedback.**
- Positive & negative feedback can happen in the same system.
- Depends on many other factors: jet power, ISM density, jet-ISM coupling

Nesvadba, GVB, DM+2020
Jets with new hybrid particle + fluid scheme

Spatial evolution:

$$\frac{d\mathbf{x}_p}{dt} = \mathbf{v}(\mathbf{x}_p)$$

Spectral evolution:

$$\mathcal{N}(p, \tau) = \int d\Omega p^2 f_0 \approx 4\pi p^2 f_0, \quad \frac{d\mathcal{N}}{d\tau} + \frac{\partial}{\partial E} \left[\left(-\frac{E}{3} \nabla_\mu u^\mu + \dot{E}_l \right) \mathcal{N} \right] = -\mathcal{N} \nabla_\mu u^\mu$$

Energy losses, synchrotron, inverse compton

DSA model for acceleration at shocks

Finally:

$$J'_{\text{syn}}(\nu', \hat{n}'_{\text{los}}, B') = \frac{\sqrt{3}e^3}{4\pi m_e c^2} |B' \times \hat{n}'_{\text{los}}| \int_{E_i}^{E_f} \mathcal{N}'(E') F(x) dE'$$
Jets with new hybrid particle + fluid scheme

- Particles get energized at shocks.
- Shocks inside the jet spine, jet-head and cocoon
- Complex trajectories

Mukherjee+2020, Mukherjee+2021

Particle color = Max energy, indicates shocks

Movie: https://youtu.be/bpFa22hjTSA
Internal shocks in turbulent cocoon

- Multiple internal shocks which can re-accelerate electrons in the backflow.
- Goes against the standard paradigm of a terminal hotspot and free-stream
- Turbulent cocoons have more shocks

Turbulent cocoon

Less turbulent jet

Turner & Shabala 2015
CRE Re-acceleration

- Mixing of CREs with different shock histories in turbulent cocoon
- CRE spectrum has imprints of different pops. Not just a power-law with cut-off.
- Electron spectrum varies with region.
- Internal shocks reflected at synchrotron at higher frequencies

Mukherjee+ in prep
Within the galactic potential jets couple strongly with host's ISM

Low power jets are important! Couple more with the ISM, will induce more turbulence and more numerous!

Both turbulence (-ive) and compression (+ive) may affect SFR. Net mass-loss/ejection difficult.

Turbulence in unstable jets can re-accelerate non-thermal electrons at complex shocks.
Estimating SFR with improved subgrid physics

Standard approaches: \(\text{SFR} = \frac{M}{t_{\text{ff}}} \) for \(\rho > \rho_{\text{threshold}} \), \(t_{\text{ff}} \propto \rho^{-1/2} \)

No input about turbulent velocity dispersion or Mach number.

Better option: Use a turbulence based SFR prescription (Krumholz+2005, Federrath+2012).

- Identify potential star forming clumps using a clump-finder.
- Find intra-cloud statistics: velocity dispersion, Mach number.
- Compute SFR of each clump assuming a turbulence driven SFR model.
Unstable jets
Non-thermal emission from jets: Particle module in PLUTO

Webb 1989

\[
\nabla_\mu (u_\mu f_0) + \frac{1}{p^2} \frac{\partial}{\partial p} \left[-\frac{p^3}{3} f_0 \nabla_\mu u_\mu + \langle \hat{p} \rangle_I f_0 \right] = 0.
\]

Spatial evolution:

\[
\frac{d\mathbf{x}_p}{dt} = \mathbf{v}(\mathbf{x}_p)
\]

Spectral evolution:

\[
\mathcal{N}(p, \tau) = \int d\Omega p^2 f_0 \approx 4\pi p^2 f_0.
\]

\[
\frac{d\mathcal{N}}{d\tau} + \frac{\partial}{\partial E} \left[\left(-\frac{E}{3} \nabla_\mu u_\mu + \dot{E}_l \right) \mathcal{N} \right] = -\mathcal{N} \nabla_\mu u_\mu
\]

Ignore:
- Spatial diffusion
- Shear
- Diffusion in momentum space, Fermi 2nd order

Energy losses, synchrotron, inverse compton

Vaidya et al. 2018

\[
\dot{E}_l = -c_r E^2
\]

\[
c_r = \frac{4 \sigma_T c \beta^2}{3 m_e^2 c^4} \left[U_B(t) + U_{rad}(E_{ph}, t) \right]
\]

\[
J_{syn}'(\nu', \hat{n}'_{los}, B') = \frac{\sqrt{3} e^3}{4\pi m_e c^2} \left| \mathbf{B}' \times \hat{n}'_{los} \right| \int_{E_i}^{E_f} \mathcal{N}'(E') F(x) dE'
\]
Modelling Diffusive Shock Acceleration (Fermi I)

\[N_d(p) = q \int_{p_0}^{p} \left(\frac{p}{p'} \right)^{-q+2} N_u(p') \frac{dp'}{p'} + bp^{-q+2} \]

\[N_d(p) = \int_{p_0}^{p} F_{\text{DSA}}(p, p') N_u(p') \frac{dp'}{p'} + bp^{-q+2} \]

Subluminal

\[q = \frac{3\beta'_1 - 2\beta'_1 \beta'_2 + \beta'^3_2}{\beta'_1 - \beta'_2} = q_{\text{NR}} + \left(\frac{1 - 2r}{r - 1} \right) \beta'^2_2 \]

Superluminal

\[q = q_{\text{NR}} + \frac{9}{20} \frac{r + 1}{r(r - 1)} \eta^2 \beta'^2_1 \]

Drury 1983

Keshet & Waxman 2005

Takamoto & Kirk 2015
Modelling Diffusive Shock Acceleration (Fermi I)

Maximum energy of shocked electrons

\[t_{\text{sync}} = \frac{\gamma m_e c^2}{P_{\text{sync}}} \quad t_{\text{acc}} = 2\pi a_{\text{acc}} \frac{\gamma m_e c}{eB} = a_{\text{acc}} \frac{2\pi}{\omega_g} \]

\[a_{\text{acc}} = \frac{\eta r}{\beta_1^2 (r - 1)} \left[\cos^2 \theta_{B1} + \frac{\sin^2 \theta_{B1}}{1 + \eta^2} + \frac{r B_1}{B_2} \left(\cos^2 \theta_{B2} + \frac{\sin^2 \theta_{B2}}{1 + \eta^2} \right) \right] \]

\[r_L = \frac{\gamma m_e c^2 \beta_\perp}{eB} \quad \gamma = \frac{\text{MIN}(\delta x / 2)eB}{m_e c^2 \beta_\perp} \]

\[J'_{\text{syn}}(\nu', \hat{n}'_{\text{los}}, B') = \frac{\sqrt{3} e^3}{4\pi m_e c^2} |B' \times \hat{n}'_{\text{los}}| \int_{E_i}^{E_f} \mathcal{N}'(E') F(x) \, dE' \]