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Some basic questions
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• Two feedback modes in literature: 
Quasar vs radio. Oversimplifies 
impact of jets. 

• Young/trapped/slow jets interact 
with the host’s ISM. Many examples 
of jet-ISM interaction.

• Radio mode can have the effect of 
quasar mode, blending the two.

• How is star-formation rate 
regulated by direct interaction?

• Impact on circum-galactic gas
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Relativistic jets with PLUTO RMHD code 
~ 20 M CPU hrs and counting

Simulations  on two scales:  
Jets inside the galaxy's potential  ~ 5 kpc  -> focus on jet-ISM feedback


Intermediate length scales 10-20 kpc -> Focus on jet dynamics & non-thermal emission




No Geometry Power 
Log (P)

Density 
(nw0, in cc) Inclination

1 Spherical 44 400
2 44 400

3 45 400
4 45 150
5 45 200
6 45 400
7 45 1000

8 46 2000

9 Disk 45 100 0
10 45 200 0
11 45 200 20
12 45 200 45
13 45 200 70

14 46 100 0
15 46 200 0
16 46 400 0

17 IC 5063 45 200 90
18 44 200 90

Jet-ISM Simulations

Spherical gas 
distriution

Disks

Densities: nw0 = 150-2000 cm-3 

Power = 1044 - 1046 ergs-1 

Densities: nw0 = 100-400 cm-3 

Power = 1045 - 1046 ergs-1 

Θ  =  0, 20, 45, 70

Gas mass ~ 109-1010 M⨀
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A Multi-phase ISM
Multiphase ISM and multiphase outflows:
1. Dilute hot energy bubble
2. Shocked dense (n > 100 cm-3) outflowing gas at >100 - 300 kms-1

3. Less dense (n~1-10 cm-3) fast flowing (>1000 kms-1) from sheared 
cloud material

4. Low power jets remain confined. Less effective in outflow, but shock 
heats the ISM.

Movie: https://youtu.be/Fh5819VkQyw

Mukherjee+2016,2017
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P45, n150

P45, n300

P44, n150

Not enough gas ‘escapes’, depends on density of clouds and jet 
power.

Galactic Fountains!

Negative feedback: Mass loss

Mukherjee+2016,2017
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FFA from jet induced ionisation

Launch scale of sims

Bicknell, DM+2018

n0 ~ 150 - 200 cm-3 n0 ~ 300 - 400 cm-3 n0 ~ 500 - 2000 cm-3

The spectra transition from a GPS to a CSS as the jet 
evolves to larger scales.

Pro: The sims follows the turnover-linear size 
correlation for some ranges of length scales and 
reasonable densities.

Con: Depends on the extent of the gas distribution. 
Our sims: have dense gas ~ 2-3 kpc. So it fails for 
larger sizes.

Movie: https://youtu.be/2GjKKAP_6J0
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Jet-disk interaction

• Inclined jets couple more with turbulent disc. 

• Backflow from the jet impacts a much larger part of the disc and engulfs it.

• Local outflows are launched at points of direct interaction

Mukherjee+2018b

Movie: https://youtu.be/8eeKSc9_AJQ



Gemini observations of Jet-ISM interaction in 4C 31.04
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H. Zovaro + MNRAS, 2019

Radio jet ~ 100 pc

FeII ~ 300 pc

Warm H2, shocked, ~104 K,
 ~ 2 kpc; 
blue shifted by 100 kms-1



Observable emission features
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Work by 
Meenakshi

Shocked OIIIDensity

W80 widths

Observed W70 for IC 5063

Venturi+2020

Jets induce 
shocks, can be 
observable in 
emission lines.

Increased 
dispersion 
perpendicular 
to jets.

Jet

Meenakshi, 
DM + in prep



Photoionisation using CLOUDY
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Ionisation cone

Partial 
obscuration

Jet opens up new lines of sight

Perpendicular jet

Inclined jet



Inclined jets: IC 5063
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Mukherjee+2018a

Position-velocity

Morganti+2015a
Simulated PV
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Estimating SFR with improved subgrid physics

Work by 
Ankush Mandal

Standard approaches:   for   ,   

No input about turbulent velocity dispersion or Mach number.

SFR =
M
tff

ρ > ρthreshold tff ∝ ρ−1/2

Better option: Use a turbulence based SFR prescription (Krumholz+2005, 
Federrath+2012).



Estimating SFR
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• Early times: SFR efficiency decreases, 
increase in turbulent dispersion (-ve 
feedback).

• But, shocks increase density.

• Later times: turbulence decays, 
enhanced density raises efficiency 
again (+ive feedback)

No jet
Myr

Myr

Myr

Myr

Myr

θj = 0∘

θj = 45∘

θj = 70∘

: angle between jet axis and disk-normalθj

Myr
Myr

Myr

Negative & positive
 feedback

Mandal, DM + in prep



Jet feedback & SFR efficiency
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• Positive feedback may not mean strong enhanced 
of SFR efficiency. Inefficient positive feedback. 

• Positive & negative feedback can happen in the 
same system. 

• Depends on many other factors: jet power, ISM 
density, jet-ISM coupling

4C 41.7, z =3.8

Nesvadba, GVB, DM+2020
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Vaidya et al. 2018

Spatial evolution:

Spectral evolution:

Energy losses, synchrotron, 
inverse compton

DSA model for acceleration at shocks

Finally:

Jets with new hybrid particle + fluid scheme
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Jets with new hybrid particle + fluid scheme

Particle color = Max 
energy, indicates shocks

• Particles get energized 
at shocks.

• Shocks inside the jet 
spine, jet-head and 
cocoon

• Complex trajectories

Mukherjee+2020, Mukherjee+2021

Movie: https://youtu.be/bpFa22hjTSA
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Internal shocks in turbulent cocoon

Turbulent cocoon 

Less turbulent jet

• Multiple internal shocks which can re-
accelerate electrons in the backflow. 


• Goes against the standard paradigm of 
a terminal hotspot and free-stream


• Turbulent cocoons have more shocksTurner & Shabala 2015
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CRE Re-acceleration

1.4 GHz

K Band (Synchrotron)

X-ray (Synchrotron)

Mukherjee+ in prep

•Mixing of CREs with different shock 
histories in turbulent cocoon

•CRE spectrum has imprints of different 
pops. Not just a power-law with cut-off.

•Electron spectrum varies with region.

• Internal shocks reflected at 
synchrotron at higher frequencies

Mukherjee+ 2021



Summarising …
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Within the galactic potential jets couple strongly with host's ISM

Low power jets are important! Couple more with the ISM, will induce more turbulence 
and more numerous!

Both turbulence (-ive) and compression (+ive) may affect SFR. Net mass-loss/
ejection difficult.

Turbulence in unstable jets can re-accelerate non-thermal electrons at complex shocks

Recollimation 
shocks

Shocks in 
cocoon

Nyland+ 2018
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Estimating SFR with improved subgrid physics

Work by 
Ankush Mandal

Standard approaches:   for   ,   

No input about turbulent velocity dispersion or Mach number.

SFR =
M
tff

ρ > ρthreshold tff ∝ ρ−1/2

Better option: Use a turbulence based SFR prescription (Krumholz+2005, 
Federrath+2012).

• Identify potential star forming 
clumps. using a clump-finder.

• Find intra-cloud statistics: velocity 
dispersion, Mach number.

• Compute SFR of each clump 
assuming a turbulence driven SFR 
model
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1.4 GHz

1.4 GHz smoothed 
to 150 pc U Band

Unstable jets



Non-thermal emission from jets: Particle module in PLUTO
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Ignore:
• Spatial diffusion
• Shear 
• Diffusion in momentum 

space, Fermi 2nd order

Energy losses, synchrotron, 
inverse compton

Vaidya et al. 2018

Spatial evolution:

Spectral evolution:

Webb 1989



Modelling Diffusive Shock Acceleration (Fermi1)
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Subluminal

Superluminal

Subluminal Superluminal

Drury 1983

Keshet & Waxman 2005 Takamoto & Kirk 2015

Drury 1983
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Modelling Diffusive Shock Acceleration (Fermi1)

Maximum energy of shocked electrons


